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Our sent understanding of the mechanisms of organometal 

reactions stems almost 

containing only one metal. ,b 

from inve 

Recen,tly 

increasing in the synthesis, structure elucidat 

of complexes 

has been 

and reaction 

mechanisms of polynuclear clusters, complexes containing more than 

one metal. This attention derives ly from the possibil 

that polynuclear catalysts and might be s such a 

way that the metals could interact, generating cooperative systems 

which might be much more than ir mononuclear analogs. 

Another stimulant to this 

complexes to larger multi-metal 

catalysts. 

has been the re ionship of cluster 

, such as 

Many polynuc clusters have been prepared and character 

and some of these have been found to ion as unique catalysts 

or catalyst precursors. However, very little is yet known about 

how chemical transformations take place at multinuclear reaction 

centers. Given s paucity of information, we decided a few 

year ago to iate mechanistic study simple systems 

containing two metal centers, in which each the s has a 

o~bound organic ligand to We also chose to focus on 

of these complexes in which new carbon~carbon or carbon~ 

hydrogen bonds are formed. This Account scribes our work on such 

a system: a binuclear alkyl cobalt complex capable of erring 

both alkyl groups to a molecule carbon monoxide. In this work 

we have adopted as one our highest the determination 
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carbon monox At 50°C this s to a quantitative y 

acetone, along with CpCo(C0) 2 and CpCo(CO)PPh
3

(§). The first step of 

this , as shown in I, involves lacement uf phosphine 

by CO in the cobalt coordination Intermediate ~~ builds up 

to some extent and can be detected by NMR and IR spectroscopy. The 

next step involves migration CH
3 

to coordinated CO, leading to acyl 

complex 2, and this complex undergoes ive elimination. We bel 

the initial replacement proc s through 1 s 

~~ s intermediate can be by phosphines such 

as P(CH
3 )

3
u which are more nucleophil than PPh

3 • Kinetic s 

show trimethylphosphine a dissoc process, pro-

ceeding via intermediate ~~ and by analogy we assume the convers of 

1 to is dissociative as well. Carbonylation a 50:50 mixture of 

O.OSM 1 and 1 6 , containing completely deuterated methyl 

acetone~d 0 and acetone-d
6 

containing ~ 1% acetone-d
3

, demonstrating 

the insertion and reductive elimination to be> 98% intramolecular.
5 

s to 

Complex 1 also reacts with alkynes alkenes. II and III 

summarize re ts from two reactions we have studied ly ex ten-

sively. 6,7 Treatment 1 with excess diphenylacetylene al 

7 and 8 and meta le 9. As the co case, s s apparently 

involves initial replacement of phosphine by alkyne, followed by 

sterospec cis insertion the alkyne into one of the cobalt 

bonds, leading to vinyl complex !~· Reductive imination and scaven-

ging of the unsaturated cobalt fragment leads to Z and 2, presumably 

via cobalt n-complex 11. Competitive th displacement 7 from 11 
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s 'tvith synthes of 

a s binuc coba We found that chemical reduc~ 

tion of CpCo(C0) 2 to paramagnetic binuclear rad 1 15 

(Chart IV), structure we determined by x-ray ffraction
1
•
0 

Alkylation 

tr.e anion was success with a number primary alkyl hal s. 

The mechanism this is 11 , but it provided 

s of dialkyl s 16. Both thermal 

led to acetone high 

The that this was a ss initiated a b.inuc 

and involving the formation two new c-c bonds, greatly stimulated 

our 

Our work has focused on complexes in ser 

b and c. vle st determined thermal decompo of the 

methyl complex to acetone 85% organometallic pro~ 

ducts of this reaction were CO-de cobalt carbonyl complexes 

which had appeared earl 2. 
~n photochemical decomposition of 

CpCo(C0)
2

• Monitoring the decompo by NMR an 

.intermediate which l:uilt up and then disappeared during 

the course of the reaction~1 This mater was identical to the mono~ 

nuclear complex CpCo(CH3) 2co (4a) which we had 

as the intermediate re for acetone formation ing 

the carbonylation of the mononuclear complex !· Thus was 

that transfer of a methyl group from one cobalt atom to the 

1 preceded ketone formation. In this case , however, cross~ 

over experiments revealed that was inter- rather than 

intramolecular. Carbonylation of a mixt.ure of 16a and s methyl-
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another molecule 16, ss to 4a. 

However, the clean f measured 

these makes sm seem more rea 

An important t is f st , involv 

meta 1 bond c set out to independent 

evidence for this process. that this 

was occurr r ly at room was some of 

chemistry of s 16. For le, 1 with NO to 

give CpCo(NO)CH3 u and 16c r 2 to give a quant 

ld the isolable complex CpCo ) (CH~CF 3 )r. More striking, 

however, was the NMR behavior of 16c. This exhibited reversible 

broadening sharp resonances +10", 

id equil 1 with a paramagnetic ies, 

sumably 18c. Once aga , a crossover experiment was instrumental 

confirming this conclus ing 16a and 16c ly generated 
-~~ 

unsymmetr complex (Chart VII). These resu s 

strong evidence that 16 18 are in equilibrium in 

However, they do not tell us whether Co(II) 

that matter, any pat.hways-~are 

the ketone-forming r ion is 

in s Account. 

III. Carbonylation of Binuc s. 
--------------------------------------------

. 13,15 1.on. 

ly involved in 

Carbonylation of complexes 16 both cleaner and more 

than thermal decomposition, and in the case of the dimethyl 

diethyl complexes, leads to improved yields ketone. In the case 

16b, S-elimination is suppres and ketone format becomes the 
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carbonylations to at room 

all mater ls ively to 

Stud of i 

d complexes 20 are to 

sm of ketone formation We have found: 

(a) decomposition of 2 la g acetone ~Qp/~!f? gives 

3 , both ly monox e; 

(b) decompos ion a 50:50 mixture d and d 1 

gives a 1:2:1 ra acetone, 2~butanone, and 3-pentanone, 

icating that is intermolecu , as was deter:m 

using isotope crossover ex.oe:riments decompos ion of ~§~; 

(c} the conver to ing at 

reasonable rates at 0° in THF in the 

CO similar results, except that some cobalt clusters were 

observed as final organometall products add to CpCo(C0) 2 • 

The rates of decompos are once f st order acyl complex 

and essentially no to changes co 16 
the ssure; 

rate constants are given in I. Most intrigu fact that 

convers of the diacetyl complexes to acetone occurs substant lly 

more rapidly than the mononuc 

cond ions. This requires that 1 

4a reacts under the same 

to ketone by two distinct routes--one slower path which proceeds 

through ~ and another more rapid 

which completely bypasses ~· 

The mechanism outlined earl in 

s, involving diacyls 20 and ~~~ 

VI can be mod in a 

relatively ightf way to explain these ionsu and this 

is done in Chart IX. The cr as ion of expanded mechanism 
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mater , which then s on to by an lar 

sm? Our further 

ev that result 

same process. 

In to answer this que ided to and 

chemi bri.dge:~d 28. We 

ium in favor 28 more 16 was 

the unbridged case, se smal amount 

trans entropy as ~~~ \vith two 

independent fragments re of 16. 

This predicts that convers to acetone s for 28 than --
for 16 if d soc is f on route to 

ketone. Additionally 1 we thought the proximity of the 

centers ~~ might cause r to ly intramolecu 

in this system. 

Bridged comp ienylmethane 

by the route shown Chart X. The 26 and ~~ are qu 

all to those compounds. 19 Complex ~§ is reduced 

to rad 1 anion ~z, which can be alkylated to give 28. This, in turn, 

gives acetone luble c on 1 decompos 

and acetone and 26 quantitatively on carbonylation. Consistent with 

our mechanistic hypothesis, are considerably slower 

than those observed with 16. near 80° are required to 

induce thermal decompos ion of ~§, and even carbonylation requ 

a temperature 70° to a rate. Because metal-

metal bond cleavage , ne complex ~Q nor binuclear 

diacyl complexes i up ing course reactions. 
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However, nature was not to us 

conclusion. Given 

the c iness of s 

reaction th pho 

corresponding reaction 

%) acetone, as 
20 

complexes ; the 

to st 

pho 

l 

, ¥tle next 

We had an to 

a lowered 

as a mononuclear 

s scouraged our 

l. In the case 

CO as 

a 

the 

that 

ligand. Thus pho , writt.en as 11 L" X, would attack one 

of the centers 29 and migration as the CO 

case, leading to 29 (L = ) • 'This give acetone 

19 
In the event, reaction 28 phosphine was quite c 

at a rate even at 25°. However, no acetone 

was in this As shown Chart XI, the sole product 

was the single organometallic comp 32. 

The most sing thing s is 32 

has both CO groups bound to the same In view of this 

result, we had to stion 29 is initial 

formed i is diff to devise a 

mechanism to explain why one of the metal~CO bonds in the 

29 should find a way to re-form. A more reasonable 

explanation is that both met.al-carbonyl bonds at one of 

metal centers in 28 remain intact during the reaction. Our 

mechanist hypothesis must therefore be mod 
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v. us ions 

It is possible that ons 16 

28 discussed here mechanisms. However v 

t s a ssumpd.on seems ne rea e nor economical. vJe 

suggest instead that the chemi of these substituted 

are related, ight into a 

be for the 1 

to J.!C 0. 

In XII we combi ion on se 

re into a i sis, il 

simplicity only the dimethyl complex 16 and the s 

ligand CO As with ~~, 'itle assuJne that metal bond cleavage 

also begins by conversion to ~§. In added 1 

dissociation to 1.8 may occur, and 1 process is rapid 

rever ble at room temperature In the of an 

external ligand such as CO, ~7 is formed. This may s to 

one molecule of 18 and one molecule of dicarbonyl 22. Reaction 

se two ies with one g 4 and 

§u and 4 is converted to acetone, sumably via t~~ at a moderate 

rate at room temperature. 

Be s ng a methyl to t~u may so undergo 

co i to give 23. Revers z of leads to 

iso ble binuclear d s 20 u and reac of ~J with ;!~ 

gives 19. Alternatively, one molecule of may a methyl 

group to another, re a mo 6 24. This s 
~ 

a rapid route to acetone which bypasses dimethyl 4 . 
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Rate Constan,t 
~I 

sec 
·-~-~--~~ 

1 + Acetone + 3?0 6.7 
~5 

c s THF, J X 10 

+ Acetone + s THF, 35° 4.5 X 10~6 

1 9 u } THF, 23° 8.18 X 10 

1 + 4 + 6 + 
~ 

c s THF, 23° 4.07 }{ 10 -·S 

~Q~~~ + Acetone + 6 
~ 

THF, 0.5 atm CO, oo 5.5 X 10~ 5 

~-

~Q~~~ Acetone + 6 THF, 9.5 atm CO, oo 3.23 1 
.) 

+ X 
~ 

28 3 0.10 2 5.59 
~-5 

+ -). c M 3g X 10 

28 + PP + 3 0.93 M 3' 28° 1.24 X 1 
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28-d 28-d, I 

0.25 53 47 
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b 

a 'I'oluene solvent 
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